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ABSTRACT

This work studies the composability of the building blocks of structural CNN models (e.g., GoogleLeNet and
Residual Networks) in the context of network pruning. We empirically validate that a network composed of
pre-trained building blocks (e.g. residual blocks and Inception modules) not only gives a better initial setting
for training, but also allows the training process to converge at a significantly higher accuracy in much less
time. Based on that insight, we propose a composability-centered design for CNN network pruning.
Experiments show that this new scheme shortens the configuration process in CNN network pruning by up to
186.8X for ResNet-50 and up to 30.2X for Inception-V3, and meanwhile, the models it finds that meet the
accuracy requirement are significantly more compact than those found by default schemes.
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1. Introduction

Network pruning is a common approach for compressing CNN models to fit into resource-constrained
devices that have limited storage and computing power. Recent studies have focused on filter-level pruning,
which removes a set of unimportant filters from each convolutional layer. Various efficient heuristic criteria
on how to evaluate the importance of a filter have been proposed Li et al. [2016], Hu et al. [2016],
Molchanov et al. [2016], Luo et al. [2017].

In spite of various pruning criteria, how to determine the appropriate number of filters to prune for each
convolutional layer is yet a largely unexplored algorithm configuration problem, which is called filter number
configuration. The tuning objective is to find the smallest model that meets a given accuracy requirement.
The configuration space is exponential to the depth of a deep network: For a k-layer CNN, the space is mk if
each layer has m possible filter numbers to choose from. As training and testing one single configuration
often takes quite some time, filter number configuration could be a very slow process. Previous studies have
to either simply fix the number of filters to prune as a constant for all layers Luo et al. [2017], or limit the
exploration to a small set of choices Li et al. [2016], imposing substantial risks of the quality of the final
configurations. It remains an open question how to enable fast explorations of a large set of filter number
configurations effectively.

In this work, we propose composability-centered CNN pruning to address the problem, particularly for
recently proposed structural CNN models such as GoogleLeNet Szegedy et al. [2015], Ioffe and Szegedy
[2015], Szegedy et al. [2016] and ResNet He et al. [2016]. Structural CNN models are models built on some
building blocks of a predefined structure (e.g. Inception module and residual block). Since they were
proposed, they have quickly drawn broad interest for their high flexibility and network quality. The basic idea
of composability-centered CNN pruning is to first train each pruned building block, then assemble them
together to form CNNs of various configurations, and finally runs a short training process on the resulting
CNNs.

A fundamental hypothesis underlying the design is that:

Pre-training the building blocks of a structural CNN helps the training of that CNN reach a
given accuracy sooner.

We call it the hypothesis on the composability of CNN block-wise training quality, or composability
hypothesis in short. The validity of the hypothesis could potentially shorten the network pruning process.
Pre-training each block takes time, but because the pre-trained result of a block benefits all the CNNs that
include that block, the gains from the many reuses of the block can potentially outweigh the cost of
pre-training significantly.

At the first glance, the hypothesis may look like transfer learning, where, a large portion (e.g., all except the
top layer) of the CNN remains unchanged when a trained CNN is migrated to a new dataset. It is important
to notice that the composability hypothesis is a hypothesis much stronger than the condition transfer learning
builds on. Rather than a large portion is reused as a whole, the reuse of pre-training results is at the level of
each piece (building block) of the CNN. The successes of transfer learning are hence insufficient to validate
the composability hypothesis.

This work strives to answer the following three main research questions:

1. Does the composability hypothesis hold empirically?
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Figure 1. Accuracy curves of the default and block-trained networks on dataset CUB200.

Table 1. Accuracies of Default Networks (init, final) and Block-trained Networks (init+, final+)

Blocks
Accuracy
Type

Flowers102 CUB200 Cars Dogs
Mean Median Mean Median Mean Median Mean Median

residual (ResNet-50)

init 0.065 0.035 0.018 0.012 0.015 0.012 0.014 0.010
init+ 0.924 0.926 0.658 0.662 0.682 0.690 0.729 0.735
final 0.962 0.962 0.706 0.707 0.799 0.800 0.753 0.754
final+ 0.970 0.970 0.746 0.746 0.820 0.821 0.789 0.791

inception (Inception-V3)

init 0.047 0.029 0.015 0.011 0.011 0.009 0.014 0.012
init+ 0.861 0.866 0.569 0.571 0.531 0.542 0.561 0.563
final 0.959 0.959 0.711 0.711 0.794 0.796 0.726 0.728
final+ 0.965 0.965 0.735 0.735 0.811 0.811 0.755 0.755

2. If it does, how to design a mechanism to effectively materialize its potential for optimizing the speed
and quality of CNN pruning?

3. How much can that help?

Section 2. answers the first question through a set of experiments. The results on different networks and
various datasets all provide strong positive support to the hypothesis. Sections 3. and 4. describe the design
of composability-centered pruning and its implementation on TensorFlow Abadi et al. [2016]. Section 5.
reports the experimental results. For ResNet-50 and Inception-V3, composability-centered pruning shortens
the pruning process by up to 186.7X and 30.2X respectively. Meanwhile, the models it finds are significantly
more compact than those by the default pruning scheme.

2. Empirical Validation of the Composability Hypothesis

To examine the composability hypothesis, we experiment with four different CNN models: ResNet-50 and
ResNet-101, as representatives of the Residual Network family, and Inception-V2 and Inception-V3, as
representatives of the Inception family. We adapt the four CNN models pre-trained on ILSVRC
2012 Russakovsky et al. [2015] to each of the four image datasets (listed in Table 2), resulting in our
unpruned models.
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For each unpruned model, we derive 500 pruned networks by pruning each building block of the model by r
fraction, where r is randomly chosen among {30%, 50%, 70%}. For each of the networks, we get a second
version by training each of its building blocks individually; the data used to train are the inputs and outputs of
that building block in the unpruned model. (More details are in Section 4.1.) We call the second version of
the network the block-trained network, and the first version the default network.

Figure 1 shows the accuracy curves of the two versions of a ResNet-50 network and an Inception-V3 network
on dataset CUB200. The initial accuracies (init) are close to zero for the default version, while 53.4% and
40.5% for the block-trained version. Moreover, the default version gets only 65.3% and 67.3% final
accuracies (final) respectively, while the block-trained version achieves 72.5% and 70.5% after only
two-thirds of the training time.

Table 1 reports the mean and median of the initial and final accuracies of all 500 block-trained networks and
their default counterparts for each of the models on every dataset. Only results for ResNet-50 and
Inception-V3 are listed due to the space limit. Overall, block-trained networks yield better final accuracies
than default networks do with one-third less training time.

The results offer strong evidence supporting the composability hypothesis. Next, we describe how we
leverage the composability for effectively optimizing the speed and quality of CNN pruning.

3. Problem Statement

We start by giving a formal definition of the basic configuration problem in CNN pruning, and then explain
the filter number configuration problem for structural CNN model pruning.

3.1 Algorithm Configuration in Network Pruning

Consider a set of training examplesD = {(x1, y1), · · · , (x|D|, y|D|)}, where x and y represent an input and a
target output respectively. The training of a CNN model is to learn a set of parametersW such that the
accuracy of the network f (W,D) is maximized, maxW f (W,D), through minimizing some cost functions
(e.g. cross entropy). Note that a parameter might represent an individual weight, a convolution kernel, or the
set of kernels (i.e. a filter) that compute a feature map. In this work, a parameter refers to a filter.

Network pruning reduces the number of parametersW by keeping only a subset of parametersW′ ⊂ W.
Network pruning tries to reduce the model size as much as possible while keeping the accuracy of the
network still meeting some requirement. This is a combinatorial optimization problem:

min
W′
||W′||0

s.t.
maxW f (W,D) −maxW′ f (W′,D)

maxW f (W,D)
<= α, (1)

where α is the accuracy drop ratio for the pruned network. For example, if α is 0.01, only one percentage
accuracy drop is allowed. After pruning, the pruned network inherits the value ofW′ and is re-trained to
recover the accuracy.

Finding a good subset of parameters to optimize the objective defined in Equation 1 will require 2|W|

evaluations for a given dataset. Since it is impractical to solve this optimization exactly, previous work in
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network pruning simplifies the problem as identifying and removing the least important filters. Many
efficient heuristic criteria on how to evaluate the importance of a filter have been proposed, such as L1/L2
norm of neuron weights Li et al. [2016], mean activations, average percentage of zeros (APoZ) Hu et al.
[2016], and Taylor expansion Molchanov et al. [2016].

Let L be the number of layers in a CNN network andW1, · · ·WL be the parameters in each layer,
W = ∪L

i=1Wi . Each layer contains a set of filtersWi = {W1
i , · · · ,W

Ni
i }. Given a pruning criterion, the

importance score of each filter Wn
i ∈ Wi can be calculated with some formula. A subset of filters with the

lowest importance scores are discarded for each layer. Let γi be the percentage of filters kept for the i-th layer
in a pruned CNN network and γ = (γ1, · · · , γL). After pruning, the set of filters in the i-th layer becomes
W′

i = {W
′1
i , · · · ,W

′N′i
i }, where N′i = γi × Ni. The parameters for the pruned network becomeW′ = ∪L

i=1W
′
i .

A problem orthogonal to identifying filter importance is how many least important filters should be removed
from each convolution layer, i.e, how to set the values for γ. We call the problem filter number configuration
problem. The size of the configuration space is

∏L
i=1 |Γi|, where γi ∈ Γi, i = 1, · · · , L. For example,

ResNet-50 He et al. [2016] contains 54 convolution layers. If the pruning options are fixed to Γ = {0.3, 0.5}
for all layers, there are totally 254 configurations to evaluate. We are not aware of any prior work that focuses
on this configuration problem.

Some general methods proposed for speeding up the configuration process of algorithms Hoos [2011] could
be applied to reduce the number configurations to evaluate. This work focuses on a complementary direction,
i.e., how to accelerate the examination of the remaining configurations. Reducing the evaluation time for
each configuration could further largely shorten the configuration process. Particularly, we focus on speeding
up the pruning of structural CNN models. we next describe the specific filter number configuration problem
for structural CNN models.

3.2 Filter Number Configuration for Structural CNN Models

CNN architectures largely fall into two broad groups: the traditional models represented by
AlexNet Krizhevsky et al. [2012] or VGGNet Simonyan and Zisserman [2014], and recent structural variants
like GoogLeNet Szegedy et al. [2015] and ResNet He et al. [2016]. We refer to the recent structural variants
as structural CNN models as they adopt some novel network structures like Inception in GoogLeNet or
residual blocks in ResNet. These models are able to achieve state-of-the-art performance on many computer
vision tasks. Being able to compress such models is of prominent importance for embedded deployment.

For structural CNN models, we consider network pruning at the granularity of building blocks composed of
multiple convolutional layers instead of a single layer. Suppose a subset of unimportant filters from a
convolutional layer are removed based on a certain criterion, its outputs (i.e. activation maps) have a different
size from the outputs from the original layer. However, for a building block, as long as the last convolutional
layer is not pruned, the outputs of the block will be of the same size as the original block. Thus we could
train the pruned blocks by reconstructing activation maps from the original block in the unpruned network.

Let B be the number of blocks in a CNN network,Wb be the parameters in the b-th original block,W′
b be

the parameters in the b-th pruned block, and δb be the percentage of filters kept for convolutional layers
within the b-th block. For structural models, instead of optimizing the configuration of γ, we optimize
δ = (δ1, · · · , δB). After δ is determined, the pruning would be just prune the 1 − δb fraction of the filters that
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Figure 2. Illustration of composability-centered network pruning. Eclipses are pruned building
blocks; rectangles are original blocks; diamonds refer to the activation map reconstruction error.
Different colors of pruned blocks correspond to different pruning options.

are the least important from convolutional layers in the b-th block; the importance of the filers are determined
through existing techniques. In the experiments, we adopt the pruning criterion used in Li et al. [2016].

Mathematically, the configuration problem for structural models can be defined as:

min
δ
||W′||0,

s.t.
maxW f (W,D) −maxW′ f (W′,D)

maxW f (W,D)
<= α,

δb ∈ ∆b, b = 1, · · · , B, (2)

where ∆b is the available percentages of filters kept for the b-th block. The size of the configuration space is∏B
b=1 |∆b|.

We propose composability-centered network pruning to reduce evaluation time of trial configurations when
solving the configuration problem defined in Equation 2. Details of this method are described in the next
section.

4. Method

This section describes our composability-centered network pruning algorithm. It has two phases: the first
phase locally trains each pruned block and the second phase assembles the blocks together and then conducts
a global fine-tuning for each block-trained network. Figures 2 illustrates the two phases. We next explain the
two phases in detail.

4.1 Phase One: Local Training

Local training works at building blocks instead of individual convolutional layers. Figure 3 gives an
illustration of the pruning strategy for a residual block. Each rectangle represents a convolutional layer.
Colored convolutional layers are pruned with a given pruning option (e.g. 50%). The last convolutional layer
from each branch is modified accordingly but not pruned, keeping the block output dimension unchanged.
Such restriction is also applied in Luo et al. [2017]. According to the results in Li et al. [2016], pruning the
last layer in a branch could cause more severe performance degradation compared with pruning other layers.
We leave a rigorous analysis about the restriction to future work.
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Figure 3. Illustration of the residual block pruning strategy. We only prune the first two convolutional
layers so that the block output dimension does not change.

Each pruned block is trained by minimizing the reconstruction error between the output activation maps from
the pruned block and the ones from the original block. Let Ob be the output activation maps from the b-th
original block and the O′b be the ones from the b-th pruned block, the optimization objective is:

min
W′

b

1
|Ob|
‖Ob − O

′
b‖

2
2 (3)

Local training is illustrated in the left side of Figure 2. Each original block and the corresponding pruned
block share the same input activation maps and yield output activation maps with the same dimension. The
parameters in each pruned block are trained with the objective defined in Equation 3 through Stochastic
Gradient Descent (SGD). Pruned blocks with more pruning options can be attached to the original network
and concurrently trained by sharing the intermediate inference results (i.e. activation maps) from the original
network.

4.2 Phase Two: Composing and Global Fine-Tuning

The local training phase outputs a bag of pre-trained pruned blocks, as shown in Figure 2 (blocks in the
original network could also be included). These blocks could be selected and stacked together to construct a
block-trained network. Note that the order of pre-trained blocks in a block-trained network is the same as the
order of their corresponding original blocks in the original network: a pruned block, locally trained with the
outputs from the i-th original block, should also be the i-th block in a block-trained network. Three networks
assembled with three different sets of pre-trained blocks are shown on the right side of Figure 2.

Ideally, if the output activation maps from original blocks can be reconstructed without error (i.e.
Ob = O′b, b = 1, · · · , B ), a block-trained network should be able to produce the same accuracy performance
as the original network. In practice, however, a pruned block with only a subset of parameters has a smaller
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Table 2. Dataset Statistics.

Dataset Size Classes Accuracy
Total Training Testing ResNet Inception

Flowers102 8,189 6,149 2,040 102 0.973 0.968
CUB200 11,788 5,994 5,794 200 0.770 0.760
Cars 16,185 8,144 8,041 196 0.822 0.801
Dogs 20,580 12,000 8,580 120 0.850 0.835

model capacity compared with the corresponding original block. Also, finding the global optimum for
Equation 3 is difficult due to its non-convex property. Therefore, a global fine-tuning is required to further
recover the accuracy performance of a block-trained network. Compared with training a default network,
which is built with pruned blocks that are not locally trained, fine-tuning a block-trained network requires
less training time.

4.3 Implementation

Our implementation is based on TensorFlow Abadi et al. [2016]. We built an integrated framework that
allows the input activation maps and output activation maps for each block in the original network to be fed
on the fly to serve as the input and ground truth in the training of the blocks. This scheme circumvents the
difficulty of saving the intermediate activation maps of the original network.

5. Experiments

We empirically evaluate the effectiveness and efficiency of composability-centered network pruning in this
section, reporting its benefits on both the speed and the quality of network pruning. We first explain the
experiment settings in Section 5.1, describe the configuration optimization strategy in Section 5.2, and then
report the experiment results in Sections 5.3 with both single node and multiple nodes.

5.1 Methodology

We pruned ResNet-50 as the representative of the Residual Network family and Inception-V3 as the
representative of the Inception family. The two models pre-trained on ILSVRC 2012 Russakovsky et al.
[2015] are adapted to four image classification tasks with the datasets Flowers102 Nilsback and Zisserman
[2008], CUB200 Welinder et al. [2010], Cars Krause et al. [2013], and Dogs Khosla et al. [2011]. The
statistics of the four datasets including the data size for training (Train), the data size for testing (Test), and
the number of classes (Classes) are reported in Table 2.

To get well-trained models for the four datasets, we trained ResNet-50 and Inception-V3 for 40,000 steps
with batch size 32, fixed learning rate 0.001, weight decay 0.00004 for all the datasets. Additional
annotations including bounding boxes and part labels are not used in the training. The preprocessing for
Resnet-50 is the same as Simonyan and Zisserman [2014] and the preprocessing for Inception-V3 follows
Szegedy et al. [2015]. The accuracy of the trained ResNet-50 and Inception-V3 models on the test datasets
are listed in columns ResNet and Inception in Table 2.

7



5.1.0.1 Network Pruning We use the L1 norm of a filter proposed by Li et al. [2016] as the pruning
criterion. An illustrations of pruning a residual block is shown in Figure 3. For all experiments, network
training is performed on the training sets while accuracy results are reported on the testing sets. ResNet-50
contains totally 16 residual blocks (B = 16) and Inception-V3 contains 11 inception modules (B = 11). The
set of pruning options for each block are fixed as ∆ = {0.3, 0.5, 0.7}. Thus the configuration space for
ResNet-50 is 316 and for Inception-V3 is 311.

5.1.0.2 Baseline In the baseline approach, when filters are pruned, a new model with fewer filters is
created and the remaining parameters of the modified layers, as well as the unaffected layers, are copied into
the new model. Given a set of configurations to evaluate, the baseline approach trains networks pruned
according to each configuration for 30,000 steps with batch size 32, fixed learning rate 0.001, and weight
decay 0.00001. We assume that the training time for recovering the accuracy of a pruned network could be
smaller than the training time for adapting a pre-trained model to new datasets due to weight inheritance in
network pruning. Thus we use a smaller number of steps for training.

5.1.0.3 Composability-Centered Network Pruning Our proposed approach first locally trains each
pruned block, assembles the trained blocks according to each configuration and conducts a global fine-tuning
on each block-trained network. The number of pruned blocks to train for ResNet-50 and Inception-V3 are 48
(i.e., 3 × 16) and 33 (i.e., 3 × 11) respectively. Local training takes 10,000 steps for ResNet-50 with batch
size 32, fixed learning rate 0.2, and weight decay 0.0001, and takes 20,000 steps for Inception-V3 with batch
size 32 and fixed learning rate 0.08, and weight decay 0.0001. The second phase fine-tuning uses the same
hyper-parameters as the baseline approach does.

5.1.0.4 Configuration Objective According to the objective function defined in Equation 2, the best
configuration is the one that has the smallest model size but maintains a satisfying accuracy (i.e., with an
accuracy drop rate less than α.) We experiment with a spectrum of α values, ranging from -2% to 8%. A
negative drop rate (e.g. −2%) means that the accuracy of the pruned model should be higher than the original
model (e.g. two percentages higher). We include negative drop rates because it is possible for the pruned
networks to outperform the original as shown in Figure 4. The model size refers to the number of model
variables. The model sizes for the original ResNet-50 and Inception-V3 are around 25.6 million and 27.2
million.

All the experiments are performed using TensorFlow 1.3.0 on Titan. Titan is a Cray XK7 supercomputer
located at the Oak Ridge Leadership Computing Facility. Each compute node contains a 16-core 2.2GHz
AMD Opteron 6274 (Interlagos) processor, 32 GB of RAM and an NVIDIA Kepler GPU with 6 GB of
DDR5 memory. In the experiments, one network is trained using one node with one GPU.

5.2 Configuration Optimization Strategy

According to the optimization objective described in Section 3.2, a naive approach to finding the best model
is to sort the configurations in an increasing order based on model size and evaluate one by one. It ensures a
global optimum if there is at least one satisfying model that can meet the constraints in Equation 2. However,

https://www.olcf.ornl.gov/titan/
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Figure 4. Accuracies of sampled configurations for ResNet-50.

as mentioned in Section 5.1, the size of the configuration space for ResNet-50 is 316 and for Inception-V3 is
311 based on our experiment settings. The above strategy is not feasible in practice.

Instead of evaluating the entire set of configurations in the space, we select configurations that are
representatives of the space with respect to model sizes through sampling. To make the model size of
sampled configurations spread out evenly in the space, we force the model sizes of sampled configurations to
follow a close-to-uniform distribution.

Specifically, let N be the number of sampled configurations. We first include the special configurations with
δb = δ,∀δ ∈ ∆, b = 1, · · · , B. To sample remaining configurations, we limit the probability of the summation
of a configuration, p(

∑B
b=1 δb) ≤ λ

B×(|∆|−1)+1 . In the experiments, |∆| = 3. λ is set to be 1.5.

The strategy to explore the configuration space is as follow:

1. Sample 500 configurations from the space using the above sampling approach.

2. Sort the set of sampled configurations based on corresponding model size in an increasing order.

3. Start evaluations from the smallest models and proceed to larger ones.

4. Stop evaluation of the remaining configurations once a satisfying model that meets the constraints in
Equation 2 is found.

Based on the above strategy, the number of trial configurations that are evaluated could be much less than
500 if there is one satisfying model found at the early stage of the exploration. Figure 4 shows the final
accuracies of all the 500 ResNet-50 variants trained with or without leveraging composability on the
Flower102 and CUB200 datasets. For reference, we also plot the accuracies of the original well-trained
ResNet-50 on the two datasets. The exploration is from the smallest model size, which is less than 30% of
the original model size, to the largest one, about 60% of the original model size.

According to Figures 4a and 4b, the block-trained network gets a better final accuracy, which echoes the
results reported in Section 2.. Since a block-trained network takes less training time and also yields a higher

9



Table 3. Speedups and Configurations Saving for ResNet-50 in the Single Node Setting.

dataset α thr_acc
#configs

saving
model size

diff
time(h)

speedup(X)
base comp base comp base comp

Flowers102

-2% 0.992 500 500 0.0% 100.0% 100.0% 0.0% 2858.7 1912.7(0.4%) 1.5
-1% 0.983 500 500 0.0% 100.0% 100.0% 0.0% 2858.7 1912.7(0.4%) 1.5
0% 0.973 297 3 99.0% 45.4% 29.3% 16.0% 1639.4 16.9(40.4%) 96.8
1% 0.963 6 1 83.3% 29.6% 27.6% 2.0% 31.0 8.3(82.8%) 3.8

CUB200

3% 0.747 500 6 98.8% 100.0% 29.6% 70.4% 2884.1 27.9(24.5%) 103.4
4% 0.739 323 2 99.4% 46.6% 28.5% 18.1% 1807.3 12.7(53.7%) 142.1
5% 0.731 297 1 99.7% 45.4% 27.6% 17.8% 1654.7 8.9(77.1%) 186.8
6% 0.724 154 1 99.4% 38.8% 27.6% 11.2% 840.1 8.3(82.6%) 101.6

Cars

-1% 0.830 500 100 80.0% 100.0% 35.7% 64.3% 2864.9 362.4(1.9%) 7.9
0% 0.822 332 11 96.7% 46.9% 30.4% 16.5% 1848.6 44.4(15.4%) 41.6
1% 0.814 189 2 98.9% 40.4% 28.5% 11.9% 1026.4 12.8(53.4%) 80.2
2% 0.806 104 1 99.0% 35.8% 27.6% 8.2% 555.6 9.6(71.2%) 57.8

Dogs

5% 0.808 500 243 51.4% 100.0% 43.0% 57.0% 2852.7 885.9(0.8%) 3.2
6% 0.799 500 123 75.4% 60.0% 36.9% 23.0% 2848.1 441.1(1.6%) 6.5
7% 0.791 434 70 83.9% 51.9% 34.2% 17.6% 2445.4 251.8(2.7%) 9.7
8% 0.782 297 11 96.3% 45.4% 30.4% 15.0% 1632.8 42.3(16.2%) 38.6

* thr_acc is the threshold accuracy corresponding to an accuracy drop rate α. base and comp refer to the
baseline approach and the our proposed composability-centered approach. saving = (#configs in base −
#configs in comp)/(#configs in base)×100%. diff = model size in base− model size in comp. The percentage
of time spent on the local training for comp is in parentheses.

final accuracy, we expect composability-centered network pruning could save some training time of the
baseline approach and also be able to find pruned models with smaller sizes.

5.3 Experiment Results

We first evaluate the performance of composability-centered network pruning in the single node scenario and
then proceed to the cases with multiple nodes.

5.3.1 Results on Single Node

In the single node setting, the configurations are evaluated sequentially. The speedups from
composability-based network pruning are listed in Tables 3 and 4. The number of configurations to evaluate
and the total evaluation time (in hours) for the baseline approach and our approach are listed in the columns
#con f igs and time(h). The percentage of configurations avoided from the evaluation are listed in the column
saving. The total evaluation time for our approach includes the time spent on local training, that is, the time
on pre-training each building block. Due to space constraints, we only listed the results with four different
drop ratios.

According to Table 3, we could avoid up to 99.6% of trial configurations and reduce the evaluation time up to
186.7X by leveraging pre-trained residual blocks for pruning ResNet-50. According to Table 4, we could
avoid up to 96.7% of trial configurations and reduce the evaluation time up to 30.2X by leveraging
pre-trained inception blocks for pruning ResNet-50.
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Table 4. Speedups and Configurations Saving for Inception-V3 in the Single Node Setting.

dataset α thr_acc
#configs

saving
model size

diff
time(h)

speedup(X)
base comp base comp base comp

Flowers102

-2% 0.987 500 500 0.0% 100.0% 100.0% 0.0% 3018.8 2023.5(0.5%) 1.5
-1% 0.978 500 500 0.0% 100.0% 100.0% 0.0% 3018.8 2023.5(0.5%) 1.5
0% 0.968 244 10 95.9% 43.2% 32.4% 10.8% 1428.6 47.3(23.3%) 30.2
1% 0.958 27 1 96.3% 33.9% 31.0% 2.9% 152.6 13.9(79.0%) 11.0

CUB200

4% 0.729 201 24 88.1% 41.4% 33.7% 7.7% 1163.8 100.3(10.9%) 11.6
5% 0.722 120 4 96.7% 38.5% 31.5% 7.0% 688.0 24.9(43.8%) 27.6
6% 0.714 63 1 98.4% 35.9% 31.0% 4.9% 357.7 14.1(77.5%) 25.4
7% 0.706 44 1 97.7% 34.8% 31.0% 3.8% 247.8 13.8(79.0%) 17.9

Cars

-2% 0.817 311 63 79.7% 45.8% 35.9% 9.9% 1828.9 250.2(4.4%) 7.3
-1% 0.809 155 20 87.1% 40.1% 33.5% 6.6% 896.5 85.6(12.8%) 10.5
0% 0.801 84 3 96.4% 36.9% 31.3% 5.6% 480.3 21.8(50.2%) 22.0
1% 0.793 33 1 97.0% 34.4% 31.0% 3.4% 186.4 14.2(77.0%) 13.1

Dogs

5% 0.794 500 499 0.2% 100.0% 56.6% 43.4% 3001.5 2007.5(0.5%) 1.5
6% 0.786 500 356 28.8% 100.0% 47.9% 52.1% 3001.5 1410.5(0.8%) 2.1
7% 0.777 496 201 59.5% 56.0% 41.4% 14.6% 2974.2 786.0(1.4%) 3.8
8% 0.769 355 129 63.7% 47.9% 39.0% 8.9% 2094.8 503.6(2.2%) 4.2
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Figure 5. Speedups on ResNet-50 in distributed settings.
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Figure 6. Computation resource saving by composability-centered pruning.

The speedups come from two aspects. Firstly, the second phase fine-tuning takes less training steps and thus
less training time. Even without any configuration saving, our proposed approach could bring up to 1.5X
speedup as the results on Flower102 show. It is because the training steps for fine-tuning is two-thirds of the
training steps in the baseline approach. The local training takes some time, but the time is small, easily offset
by the time savings in the fine-tuning phase. For example, the total time spent on local training of residual
blocks pruned with the three pruning options of ResNet-50 on Flowers102 is around 410 min (124 min for
δ = 0.3, 130 min for δ = 0.5, and 156 min for δ = 0.7). Fine-tuning one configuration in our approach takes
at least 200 min while the training time in the baseline is at least 300 min. If totally 500 configurations need
to evaluate, the overhead of local training is negligible due to the many reuses of trained building blocks. The
results for Flowers102 in Tables 3 and 4 show that the percentage of time spent on local training takes only
0.4% and 0.5% of the end-to-end time in our proposed approach for ResNet-50 and Inception-V3 with
α = −2%,−1%.

The second aspect is the saving of trial configurations. Because a block-trained network could achieve a
higher final accuracy, composability-centered network pruning could stop the exploration of configuration
space earlier than the baseline approach. For example, in Table 3, with a drop rate α = 0%, the baseline
approach needs to evaluate 297 configurations before a satisfying model is found on the Flowers102 dataset.
It takes 1639.4 hours of training. However, by leveraging pre-trained residual blocks, the number of
configurations to evaluate is reduced to three and the training time including both the first phase local training
and the second phase fine-tuning is only 16.9 hours. This second aspect contributes to the most of the
speedups.

Due to the saving of trial configurations, the size of a satisfying model found by leveraging composability is
also smaller, as evidenced by the results in columns model size and diff in Tables 3 and 4. For example, for
ResNet-50 on Flowers102 with α = 0%, after evaluating 297 configurations, the baseline approach found a
satisfying model that is 45.4% of the original model size while our approach found a much smaller satisfying
model that is 29.3% of the original model size. Overall, in most cases, satisfying models found by leveraging

12



composability are much smaller than the models found by the baseline approach.

5.3.2 Results on Multiple Nodes

The results from distributed settings are interesting to examine because it is commonly used to accelerate the
end-to-end time of algorithm configurations, especially when the configurations to examine are independent
of each other.

We specify the number of workers to be 2, 4, 8, 16, 32, 64, 128, and 256. Each worker corresponds to one
node with one GPU. Each worker evaluates the configuration with the current smallest model size that is not
evaluated yet. Once a worker found a satisfying model, all the workers stop the training. Speedups are
calculated as the ratio of the end-to-end configuration time of the baseline approach and that of the
composability-centered network pruning, which includes the time for both local training and fine-tuning.

As mentioned in Section 5.3.1, the speedups of leveraging composability mainly comes from the saving of
trial configurations. With an increasing amount of nodes, the end-to-end time saving from the reduced
number of trial configurations becomes less significant. It is because even though in the
composability-centered case, lots of computing nodes are idle, waiting for the slowest node to finish, the
end-to-end time is determined by the finish of the slowest node. In addition, the overhead of local training
becomes prominent because the pruned building blocks are trained on a single node in this experiment. The
above two reasons explain the speedup trends shown in Figure 5. It is worth mentioning that the overhead of
local training can be reduced by pre-training building blocks with multiple nodes since they are independent
tasks. We leave this to future work.

Although the speedups become smaller with multiple nodes, the total used computing resource (e.g., the sum
of the active computing times of all nodes) is significantly reduced by the computability-centered version. As
Figure 6 shows, even in the extreme case with 500 nodes, there are up to 96.6% computation resource saving
for pruning ResNet-50 and up to 84.4% resource saving for pruning Inception-V3. Note that the size benefits
of the composability-centered network pruning remain the same as in the single node setting; the sizes of the
models it finds are significantly smaller than those found by the baseline method.

6. Conclusions

In this work, we have studied composability for pruning structural CNN models. We empirically validated
the composability hypothesis and proposed a composability-centered network pruning method to accelerate
the filter number configuration problem. Experimental results show that by leveraging the composability, the
method reduces the configuration time by a factor of up to 186.7 for ResNet-50 and up to 30.2 for
Inception-V3 and also finds satisfying models of significantly smaller sizes.
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